If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+2k-99=0
a = 1; b = 2; c = -99;
Δ = b2-4ac
Δ = 22-4·1·(-99)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-20}{2*1}=\frac{-22}{2} =-11 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+20}{2*1}=\frac{18}{2} =9 $
| -6-2/3m=-16 | | 3(4x+5)=2(7x-1) | | n/3+0.6=2 | | 4v+5=6v-21 | | 2x+4÷3=13+7 | | -27-8r=-37 | | -37=8r-(-27) | | 6(y+9)=-6y-6 | | -37=8r-27 | | 5x-3-8x-7=50* | | 6t-30=3t+21 | | -3p−10=7p | | 2x+9=8x+29 | | 5x+4=3x-11 | | 6x-3+11x+1=180 | | 5x=2325 | | 4u+32=2u+48 | | 2-3x=-6x+20 | | (359+5p^2)/(15+5p)=20 | | 9x-26=4x+43=2x-12 | | 87/10x=6-1/5x | | v+12=7v-42 | | 3a+30=5a-4 | | x+3x-10+x=-20 | | X^2=-6i | | 6c+5(11+3c)=-8 | | 5(4+2x)-(8x12)=68 | | 4(-5x-5)+2x+1=-75 | | 45=-9(5+x) | | 8(x+12)=15x47 | | y5+10=19 | | 8(x+12=15x47) |